Type Author Type 181 Ta(22 Ne, 18 N) 1989 Zh04 History Citation Literature Cutoff Date **ENSDF** 30-Jun-2021 1989Zh04: A thick Ta target was bombarded by a 35 MeV/nucleon 22 Ne beam to produce 18 N ions that were selected by the Reaction Products Mass Separator (RPMS) at the NSCL/MSU. The 18 N ions were implanted into a telescope comprised of five Si detectors that was situated in the focal plane of the RPMS. An implantation period of 1.2 s was used for collecting activity; this was followed by a 1.3 s counting period. The β -decay products were detected with essentially 100% efficiency. The apparatus was calibrated using β -delayed α -particle emissions groups from 11 Be and 8 Li nuclei. R. Spitzer, J. H. Kelley Two strong groups are observed in the α -particle spectrum, resulting from decays of the $^{18}\text{O*}(7616,8038)$ states with $J^{\pi}=1^{-}_{3}$ and 1^{-}_{4} , respectively. A broad peak near 3 MeV ($E_{x}=9$ MeV, $\Gamma_{\alpha}\approx500$ keV) is also observed but the origin was unclear. (1987Aj02) suggests there may be 6 unresolved α -particle emitting groups in this region. The β -decay branching ratios to $^{18}\text{O*}(7616,8038)$ are found as 6.8% 5 and 1.8% 2 assuming $\Gamma_{\alpha}/\Gamma=1.0$ for these states. The branching ratio \geq (3.6 2)% was deduced for the broad structure. A total β -delayed α -decay branching ratio of (12.2 6)% is deduced. ¹⁸N Levels E(level) Comments Full Evaluation 0 $\%\beta^-\alpha=12.2\ 6\ (1989\text{Zh}04)$